GCD
The greatest common divisor (GCD) of a and b is the largest number that divides both of them with no remainder.
gcd(m,n)=gcd(n,m%n)
Base case:
gcd(m,0)=m
Program:
n1=int(input("Enter a Number"))n2=int(input("Enter another Number"))while n2!=0:rem=n1%n2n1=n2n2=remprint ("GCD of given numbers is:",n1)Input:Enter a Number 54Enter another Number 45Output:GCD of given numbers is: 9
References
- Allen B. Downey, “Think Python: How to Think Like a Computer Scientist‘‘, 2nd edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- Guido van Rossum and Fred L. Drake Jr, ―An Introduction to Python – Revised and updated for Python 3.2, Network Theory Ltd., 2011.
- John V Guttag, ―Introduction to Computation and Programming Using Python‘‘, Revised and expanded Edition, MIT Press , 2013
- Robert Sedgewick, Kevin Wayne, Robert Dondero, ―Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- Timothy A. Budd, ―Exploring Python‖, Mc-Graw Hill Education (India) Private Ltd.,, 2015. 4. Kenneth A. Lambert, ―Fundamentals of Python: First Programs‖, CENGAGE Learning, 2012.
- Charles Dierbach, ―Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- Paul Gries, Jennifer Campbell and Jason Montojo, ―Practical Programming: An Introduction to Computer Science using Python 3‖, Second edition, Pragmatic Programmers, LLC, 2013.